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A superlattice of 2d electrons in the fractional quantum 
Hall effect regime-the effects of tunnelling between 
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t Theoretical Division, MS 87-62, Los Alamos National Laboratory, Los Alamos, NM 
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AMrad. The superlattice of parallel two-dimensional electron layers in a strong per- 
pendicular magnetic field with small tunnelling between the layers is considered. For simple 
fractional filling factors in each layer we propose a new variational ground state. We study 
the collective excitation spectrum in singlemode approximation and make a conjecture on 
the offset of the fractional quantum Hall effect when the tunnelling becomes sufficiently 
strong. 

1. Introdudion 

The fractional quantum Hall effect [l] (FQHE) is a remarkable phenomenon that arises 
from the Coulomb interaction between 2d electrons put into a strong perpendicular 
magnetic field, such that only the single Landau level is partially occupied. It is believed 
that it is a consequence of the dispersion relation of the intra-Landau-level collective 
excitations in the FQHE regime [2], which exhibits a gap at k = 0 and a magneto-roton 
minimum at the finite wavevector. Also, a restriction on the particle dynamics along the 
direction of the field, so that the system is effectively two-dimensional, appears to be 
essential for the effect. Recently [3,4], interest has focused on superlattices of 2d 
electron layers in a strong magnetic field where a third degree of freedom, asociated 
with the motion of electrons along a field, can be introduced in a controlled manner. 
Theoretical studies of a free interacting electron gas [5, 61 as well as an interacting 
electron gas in a superlattice potential [7], in a strong uniform magnetic field, and all 
being done in the Hartree-Fock approximation, indicated that these systems have 
unexpectedly rich phase diagrams. However, the question of how to include the known 
tendency of electrons to form highly correlated uniform-density states in two dimensions, 
responsible to FQHE [8] has not been touched upon. 

It has been shown that in a collective excitation spectrum of a superlattice of 2d 
electronic layer sat  filling l/m, with m-odd in eachlayer [9] and when tunnelling between 
layers is not allowed, the Coulomb interaction between electrons from different layers 
will introduce additional dispersion alongthe field, andthat the magneto-roton minimum 
for low W i g  factors is most likely to collapse at the ends of the first Brillouin zone (at 
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k, = n/c, the z-axis is in the direction of the field, c i s  the distance between adjacent 
layers). In the present note we concentrate solely on the effect of electrons tunnelling 
from one layer to another in the F ~ I I E  regime in each layer. It is shown that the ground 
state has to change when a small hopping term is present in a Hamiltonian. A collective 
excitation spectrumcalculated in single-mode approximation (SMA) will also be modified 
by this small perturbation, and it will be demonstrated that for hopping that is strong 
enough one should expect the system to go to a new phase. 

2 TeSanoviC and I F Herbut 

2. The effects of electron tunnelling 

We start by writing down the Hamiltonian for a system of parallel layers of electrons in 
a strong magnetic field with allowed hopping between nearest neighbouring layers and 
interaction between electrons from the same layer. In order to treat all electrons in our 
system as being indistinguishable the Hamiltonian is written in a second quantized form 

NI 

i=  1 <i.t>,a 
H = c H; - t c e:& (1) 

where indices (i,]) denote the nearest neighbour layers, CY denotes the single-particle 
states that span the lowest Landau level in a layer and Hi is a two-body Hamiltonian of 
interacting electronsfrom the same layer. We assume that only the lowest Landau level 
in each layer is partially occupied, the spins are completely polarized and we impose 
anticommutation relations 

[ea, bj.81+ = 6i,j6a.a [ei ,e ,  ej,61+ =o. (2) 
Since we are interested in the spectrum of our Hamiltonian for sufficiently small 

tunnelling, first we must write down the ground state when t = 0. For simple filling 
factors v = l/m, m-odd, this ground state should have Laughlin state correlations in 
each layer built in and also should be properly antisymmetrical with respect to all 
electrons. In the second quantized formalism this can be achieved by writing it as 

IYa= (y4)lo) (3) 

where (0)isavacuumand Ly isanoperatorwhich, actingonvacuum,createsaLaughlin 
state in a layer i. It is defined with 

where N is a number of electrons per layer and coefficient is defined as the 
overlapbetween the Laughlin wavefunction for fillingfactor U and theslaterdeterminant 
of single particle states el, ez, . . . e, (see [IO]). 

Now, we are in the position to be able to search for the state with a lower energy than 
that defined with (3) when t # 0 in the Hamiltonian (1) (but which is small compared 
with the particular energy defined later). We propose the new ground state of the 
Eollowing form 

la) = a(exp b&.j)e~aej, ,JIY:) (5) 
<i.tl,= 

where parameters a and b are to be determined variationally. To find the expectation 
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value of our Hamiltonian in this variational ground state as well as the norm of the state 
of the lowest order intone assumes that coefficients b&, j )  are analytical in t and writes 
the state I @) to the lowest order 

Coefficients be(;, j )  are symmetric in indices i and j and since we limit ourselves to a 
case of tunnelling only between nearest neighbours we may write them as dependent 
only on index cu. The condition of state normalizability (6) is given by 

where N L  is the number of layers and (na) = ( O l i ~ ~ ~ , k i , , i / l O )  is the number of 
particles instate cuaveragedover thelaughlinstate. Since theLaughlinstateisauniform 
isotropic liquid (ne)  = U. Introducing electron and hole excitation energies in the Laugh- 
lin state as 

we can define A(a) = E,(cu) + Eh(?) -"2e0 as the energy for creating an excitation 
above ground state, where Eo = (0 I LY+HiL; IO) is just the energy of the Laughlin state 
for an isolated layer. Minimizing the expectation value (@[HI @) with state I @) being 
properly normalized to the lowest order in t ,  one obtains coefficients 

and the ground state energy 

( 1 1 )  
t2  (@lkl@) = NLEo - ~ N L  a + O(t4) 

wherenow, newenergy A isdefinedwith A-' = XeA;'(n,)(l - (n,)). Notice that Ais 
always larger than zero, so state 10) has a lower energy than a state 1 WE). In this way we 
obtained the natural energy to compare with f ;  our calculation assumes the ratio t/A(cu) 
to be a small number. 

Having established the ground state for our Hamiltonian we are in a position to study 
the spectrum of collective excitations using the projected SMA of Girvin et a1 [2] .  In this 
approximation the energy of density fluctuations is given with 

e@, k,) =f@, k,)/s(k, k,) (12) 
andf(k,k,) = ( ~ l P + ( k , k , ) [ k , ~ ( k , k , ) l I @ ) , a n d s ( k , k , )  = {@IP+(k,  k,)P(k,k,)l@.) 
is a static structure factor. The projected density operator in the second quantization is 
defined as 

P(k, k,) = exp[i(k. r + k,z)]Y+(r, z)Y(r, z)  drdz (13) 

where k(r) and k&) are vectors in the plane and along the field, respectively, @(r) are 
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eigenfunctions of the eigen-momentum operator in symmetric gauge within the lowest 
Landau level, and C(z - zJ is a Wannier function localized around layer i. 

Since we are interested in e&, k,) to the lowest order in t ,  the approximation of the 
projected density operator which would be correct for small tunnelling is needed at this 
point. We detine F*,s(k) = Jexp(ik.r)Qz(r)GPg(r) &and write the projected density 
operator in the form 

Z TefanouiC and I F Herbut 

P(k, k,) P o ( k  k) + P I @ ,  k,) (15) 
where 

P O W ,  k,) = Z, ~=,Pg(k) Z, I exp(ik,Z) I c(Z - zi)12 k e ~ ~ e ~ . s  (16) 
%B I 

We are actually taking the Wannier functions C(z) in a tight-binding approximation 
and assuming that only the overlap between nearest neighbours is important. In this 
approximation these functions are localized on a scale I (which in heterostructures 
happenstobeoforderofmagnetic1ength)andismuchsmallerthanthedistancebetween 
adjacent plates c. Therefore, we will take in lowest order D1 - l/c. Also, Z/c = t/Al 
where A,  is the energy of the order of magnitude of excitation A(&). With all this in 
mind our projected density operators are written in the form 

A(&, k,) = (?/A,) C exp(ik,(z, + " C / 2 ) ) F ~ . . s ( k ) ~ ~ ~ ~ i + ~ , p  (19) 
n=+l.j,a.Pg 

with the additional assumption that important overlapping of tight-binding functions 
&) happens in the middle of two layers. If we insert the two last expressions in the 
definition of the projected static structure factor s(k,  k,) it can be written as 

(20) s(k,  k,) = NLso(k )  + t2(A(k) cos(k,c) + E(k)  cos(k,c/2) + C(k))  

where 

s d k )  = NE1WY(;IPtPOIW (21) 
is the projected static structure factor in the layer of Girvin et a1 and functions A,  E and 
Care defined as 

A(k) = (t' cos(k ,c ) ) - ' ( 'YgI~P~Po~IYi i )  (22) 

~ ( k )  = (t' cos(k,c/~))-'((~g I fo$ol IYB) + complex conjugate) (23) 

C(k) = t - * ( w l o ~ o , I w  (24) 

and 

and +stands for En= ~ l , i , a ( T / A ( ~ ) ) e t , E i + n , . .  It is straightforward but tedious to show 
that functions A, E and Care functions of k and not of k,. Also, we define them not to 
be functions oft either, so the first correction in the static structure factor (20) to the 
case without hopping is of the order of t'. 



Superlahice in FQHE regime 9979 

To obtain the energy of collective excitations (14) one has to calculate f ( k ,  kz). In 
our approximation this can be written as 

f(k, k,) = NLfo(k)  + 12[D(k) cos(k,c) + E(k) cos(k,c/2) + F(k)] (25) 
where 

fo(k) = NmJIrgIPb[fio,PollY~) (26) 
is again the in-the-layer projectedf(k) function [2] and 

D(k) = (9 cos(k,c))-'(Y'o"I(Eof[k~,Po]i+ ? P ; [ f i ~ , P o ]  
+ F+P[fi , ,Polfl~P) (27) 

+ P : [ f i o , P o l f +  f + P t [ f i O , P l I +  f+P?[kO,POIl~8) (28) 

E(&) = ( t 2  cos(k,c/2~~-'~Y~IPof~fi*,P*l+ i 3 : [ f i l 3 P 0 I  + P b [ f i o ,  P l l f  

W) = t-zwi 10: [fio , PI I I YIrg) (29) 
where we abbreviated fi0 = 2 r L f i i  and Hl = -f2u,,,.,&6i,,. Functions D, E and F 
again depend only on k, not on I or k, and have the dimension [energy]-'. 

Using (20) and (25) we can write e(k, kz) to the lowest order in tunnelling f 

e@, k,) = e o ( W  - t2/(N~so(K))((A(k) - D(k)/eo(k)) cos(k,c) 

+ (W) - E ( ~ ) / e , ( k ) )  cos(kzc/2) + C(k) - F(k)/eo(k))l (30) 
where eo@) is the dispersion relation of the collective excitation spectrum for a 2d layer 
of interacting electrons [2]. 

To calculate dispersion (30) explicitly one gets involved in enormous algebraic 
difficulties and in intrinsic problems related to representing the Laughlin wavefunction 
in the second quantization. We are currently involved in such considerations but it turns 
out that this information is not essential for the following discussion, and we will 
concentrate on the magneto-roton minimum in our spectrum of collective excitations. 
For small I the minimum of function e(k, k,) will occur at I kl= l/u, a being the average 
distance between particles in the same plane, because in (30) the second term in the 
square bracket is much less than one. To see where this minimum will show up on the 
kiaxis one should notice that the presence of the cos(k,c/2) term in (30) is an artefact 
of our approximation that the important overlap of functions f ( z )  in a tight-binding 
picture takes place at a half distance between plates. If the most significant overlapping 
is at some other point, then in our approximation instead of having c/2 in the final 
formula for e(k, k,)! we would have some other fraction of c. Since the position of the 
minimum of excitation spectrum on the k,-axis depends only on the symmetry, and is 
insensitive to detailsof our approximation, the only value of k,  for which simultaneously 
cos(k,c) and cos(k,c/q), q > 1, reach their extremums, for every q that we choose, is 
k, = 0 (or, equivalently k, = 2x/c). The introduction of a third degree of freedom along 
the field via small tunnelling of electrons from one layer to another in Hamiltonian (1) 
certainly cannot enhance the gap in the spectrum so we write a magneto-roton minimum 
of e(k, k,) in the presence of small tunnelling 

A,,,, = AL(1 - const(t/AL)z) (31) 
where Akr is the energy of the magneto-roton minimum for a purely 2d system of [2]. 
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Equation(31)isvalidinthelimitoft/A(ru) lwith aconstantoforderunity.Therefore, 
we suppose that for some critical value of tunnelling energy rc, which is of the order of 
theLaughlinexcitationenergy, thegapinthespectrumcollapsesandthesystem becomes 
unstable towards a formation of a Wigner crystal, as is expected in a crossover from a 
Zdto3dinteractingelectrongasinstrongmagneticfield[ll]. Since,inourHamiltonian, 
interaction between electrons from different layers is not included, the density of the 
electrons in this new phase has to be periodic along the z-axis with period c, the opposite 
to the case with this interaction but without hopping 191, when one expects a body- 
centred-tetragonal (or hexagonal) lattice to be formed (period 2 4 .  Therefore, on 
physical grounds, one should also expect a minimum of e(k, k,) to occur at k, = 0 (or, 
equivalently at 2n/c). 

2 TeSanooiC and I F  Herbut 

3. Conelusion 

As a conclusion, we have demonstrated that when small tunnelling between 2d layers 
of electrons is present in the superlattice, both the ground state and the energy of 
collective excitations is changed. For much smaller tunnelling than the energy of the 
Laughlin quasiparticle excitations, at simple filling factors U = l/m mm still occurs. 
However, we have demonstrated that the energy of the magneto-roton minimum is 
renormalized by the presence of a hopping term in the Hamiltonian and we argue that 
for strong enough tunnelling a Wigner crystal is formed in each layer, and the FQHE is 
ultimately destroyed. 
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